summaryrefslogtreecommitdiffstats
path: root/pdf_reader.py
blob: 7f9e2b393eff5a91ce50bc6fae4e22b0b295593a (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
import os
import argparse
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain_community.document_loaders import PyMuPDFLoader
from langchain_community.vectorstores import Chroma
from langchain_community.llms import Ollama
from langchain_community.embeddings import OllamaEmbeddings
from langchain.chains import RetrievalQA
from langchain.docstore.document import Document
from PyPDF2 import PdfReader
import pytesseract
from PIL import Image
import io
import fitz  # PyMuPDF

# Make sure Tesseract is installed and accessible
pytesseract.pytesseract.tesseract_cmd = r'/usr/local/bin/tesseract'  # Update this path based on your tesseract installation

def extract_text_from_pdf(pdf_path):
    """Extract text from a PDF file."""
    try:
        # Try to extract text using PyPDF2
        text = ""
        with open(pdf_path, 'rb') as file:
            pdf = PdfReader(file)
            for page in pdf.pages:
                text += page.extract_text() or ""
        print(f"Extracted {len(text)} characters from the PDF using PyPDF2.")
        return text
    except Exception as e:
        print(f"Error extracting text from PDF: {e}")
        return None

def perform_ocr_on_pdf(pdf_path):
    """Perform OCR on a PDF file to extract text."""
    try:
        doc = fitz.open(pdf_path)  # Open the PDF with PyMuPDF
        text = ""
        for page in doc:
            pix = page.get_pixmap()
            img = Image.open(io.BytesIO(pix.tobytes()))
            ocr_text = pytesseract.image_to_string(img)
            text += ocr_text
        print(f"Extracted {len(text)} characters from the PDF using OCR.")
        return text
    except Exception as e:
        print(f"Error performing OCR on PDF: {e}")
        return None

def get_pdf_text(pdf_path):
    """Determine if OCR is necessary and extract text from PDF."""
    text = extract_text_from_pdf(pdf_path)
    if text and text.strip():  # Check if text is not None and contains non-whitespace characters
        print(f"Successfully extracted text from PDF. Total characters: {len(text)}")
        return text
    else:
        print("No text found using PyPDF2, performing OCR...")
        ocr_text = perform_ocr_on_pdf(pdf_path)
        if ocr_text and ocr_text.strip():
            print(f"Successfully extracted text from PDF using OCR. Total characters: {len(ocr_text)}")
        return ocr_text

def process_pdf_for_qa(pdf_path, embeddings):
    """Prepare a PDF for question answering."""
    # Get text from PDF
    text = get_pdf_text(pdf_path)

    if not text:  # Check if text extraction or OCR failed
        print("Failed to extract text from the PDF. Please check the file.")
        return None

    # Split text into manageable chunks
    text_splitter = RecursiveCharacterTextSplitter(chunk_size=500, chunk_overlap=100)
    texts = text_splitter.split_text(text)
    print(f"Split text into {len(texts)} chunks for processing.")

    # Convert texts into Document objects for embedding
    documents = [Document(page_content=chunk) for chunk in texts]
    
    # Create a vector store from the documents using Chroma
    print("Creating a vector store using Chroma...")
    vector_store = Chroma.from_documents(documents, embeddings)

    return vector_store

def create_qa_chain(vector_store, llm):
    """Create a QA chain for answering questions."""
    # Use the vector store retriever directly
    retriever = vector_store.as_retriever()

    # Create a RetrievalQA chain using the new approach
    qa_chain = RetrievalQA.from_chain_type(llm=llm, chain_type="stuff", retriever=retriever)

    return qa_chain

def format_answer(response):
    """Format the answer to ensure plain text output without any special characters."""

    # Handle different response formats
    if isinstance(response, dict):
        answer = response.get('result', '')
    elif isinstance(response, list):
        answer = "\n\n".join(item.get('query', '') for item in response if 'text' in item)
    else:
        answer = str(response)
    
    # Clean up the text: Remove excess newlines and strip whitespace
    answer = answer.replace("\\n", "\n").replace("\\'", "'").replace('\\"', '"').strip()

    return answer

def main():
    # Parse command line arguments
    parser = argparse.ArgumentParser(description='PDF Question Answering using LangChain and Ollama')
    parser.add_argument('pdf_path', type=str, help='Path to the PDF file')
    args = parser.parse_args()

    # Check if the PDF file exists
    if not os.path.exists(args.pdf_path):
        print(f"Error: The file {args.pdf_path} does not exist.")
        exit(1)

    # Initialize LLM (LLaMA 3.1 model hosted on Ollama)
    llm = Ollama(model="llama3.1")

    # Initialize Ollama embeddings model using nomic-embed-text:latest
    embeddings = OllamaEmbeddings(model="nomic-embed-text:latest")

    # Process the PDF and prepare it for QA
    print("Processing the PDF. Please wait...")
    vector_store = process_pdf_for_qa(args.pdf_path, embeddings)

    if vector_store is None:
        print("Processing failed. Exiting.")
        exit(1)
    
    # Create the QA chain
    qa_chain = create_qa_chain(vector_store, llm)

    # Interactive mode for asking questions
    print("PDF processing complete. You can now ask questions about the content.")
    print("Type 'exit' or 'quit' to end the session.")

    while True:
        question = input("Enter your question: ").strip()
        if question.lower() in ["exit", "quit"]:
            print("Exiting the session. Goodbye!")
            break
        
        # Get the answer
        response = qa_chain.invoke(question)
        
        # Format the answer
        answer = format_answer(response)

        # Check if the answer is empty or only contains newlines
        if answer.strip():
            print(f"Answer:\n\n{answer}\n")
        else:
            print("No relevant information found for your question. Please try asking a different question.")

if __name__ == "__main__":
    main()