1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
|
import argparse
import hashlib
import io
import json
import os
from datetime import datetime
from typing import Any
import fitz # PyMuPDF
import pytesseract
from PIL import Image
from PyPDF2 import PdfReader
from langchain.memory import ConversationBufferMemory
from langchain.docstore.document import Document
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain.chains import create_history_aware_retriever, create_retrieval_chain
from langchain.chains.combine_documents import create_stuff_documents_chain
from langchain.prompts import ChatPromptTemplate
from langchain_chroma import Chroma
from langchain_community.embeddings import OllamaEmbeddings
from langchain_community.llms import Ollama
from langchain_core.language_models import LLM
# Make sure Tesseract is installed and accessible
pytesseract.pytesseract.tesseract_cmd = r'/usr/bin/tesseract' # Update this path based on your tesseract installation
def extract_text_from_pdf(pdf_path):
"""Extract text from a PDF file."""
try:
# Try to extract text using PyPDF2
text = ""
with open(pdf_path, 'rb') as file:
pdf = PdfReader(file)
for page in pdf.pages:
text += page.extract_text() or ""
print(f"Extracted {len(text)} characters from the PDF using PyPDF2.")
return text
except Exception as e:
print(f"Error extracting text from PDF: {e}")
return None
def perform_ocr_on_pdf(pdf_path):
"""Perform OCR on a PDF file to extract text."""
try:
doc = fitz.open(pdf_path) # Open the PDF with PyMuPDF
text = ""
for page in doc:
pix = page.get_pixmap()
img = Image.open(io.BytesIO(pix.tobytes()))
ocr_text = pytesseract.image_to_string(img)
text += ocr_text
print(f"Extracted {len(text)} characters from the PDF using OCR.")
return text
except Exception as e:
print(f"Error performing OCR on PDF: {e}")
return None
def get_pdf_text(pdf_path):
"""Determine if OCR is necessary and extract text from PDF."""
text = extract_text_from_pdf(pdf_path)
if text and text.strip(): # Check if text is not None and contains non-whitespace characters
print(f"Successfully extracted text from PDF. Total characters: {len(text)}")
return text
else:
print("No text found using PyPDF2, performing OCR...")
ocr_text = perform_ocr_on_pdf(pdf_path)
if ocr_text and ocr_text.strip():
print(f"Successfully extracted text from PDF using OCR. Total characters: {len(ocr_text)}")
return ocr_text
def compute_pdf_hash(pdf_path):
"""Compute a unique hash for the PDF file to identify if it's already processed."""
hasher = hashlib.sha256()
with open(pdf_path, 'rb') as f:
buf = f.read()
hasher.update(buf)
return hasher.hexdigest()
def load_metadata(persist_directory):
"""Load metadata from a JSON file."""
metadata_path = os.path.join(persist_directory, 'metadata.json')
if os.path.exists(metadata_path):
with open(metadata_path, 'r') as f:
return json.load(f)
else:
return {'processed_pdfs': []}
def save_metadata(persist_directory, metadata):
"""Save metadata to a JSON file."""
metadata_path = os.path.join(persist_directory, 'metadata.json')
with open(metadata_path, 'w') as f:
json.dump(metadata, f)
def process_pdf_for_qa(pdf_path, embeddings, base_persist_directory):
"""Prepare a PDF for question answering, using a unique Chroma persistence directory for each PDF."""
pdf_hash = compute_pdf_hash(pdf_path)
persist_directory = os.path.join(base_persist_directory, pdf_hash) # Use hash to create a unique directory
# Load or initialize metadata
metadata = load_metadata(base_persist_directory)
# Check if this PDF has already been processed
if pdf_hash in metadata['processed_pdfs']:
print(f"This PDF has already been processed. Loading embeddings from the database at {persist_directory}.")
vector_store = Chroma(persist_directory=persist_directory, embedding_function=embeddings)
return vector_store
# Initialize or load Chroma vector store for this specific PDF
vector_store = Chroma(persist_directory=persist_directory, embedding_function=embeddings)
# Get text from PDF
text = get_pdf_text(pdf_path)
if not text: # Check if text extraction or OCR failed
print("Failed to extract text from the PDF. Please check the file.")
return None
# Split text into manageable chunks
text_splitter = RecursiveCharacterTextSplitter(chunk_size=500, chunk_overlap=100)
texts = text_splitter.split_text(text)
print(f"Split text into {len(texts)} chunks for processing.")
# Convert texts into Document objects for embedding
documents = [Document(page_content=chunk) for chunk in texts]
# Add the new documents to the existing vector store
print("Adding new documents to the vector store and persisting...")
vector_store.add_documents(documents)
# Update the metadata to include this processed PDF hash
metadata['processed_pdfs'].append(pdf_hash)
save_metadata(base_persist_directory, metadata)
return vector_store
def create_qa_chain_with_memory(vector_store: Any, llm: LLM) -> Any:
"""
Create a QA chain with conversational memory for answering questions using the provided vector store and LLM.
Args:
vector_store: The database of vectors representing text embeddings.
llm: The Large Language Model instance.
Returns:
A retrieval chain object that can be used to answer questions by querying the LLM with user input.
"""
# Use the vector store retriever directly
vector_store_retriever = vector_store.as_retriever()
# Initialize conversation memory
memory = ConversationBufferMemory(memory_key="chat_history", return_messages=True)
# Condense question prompt template
condense_question_system_template = (
"Given a chat history and the latest user question "
"which might reference context in the chat history, "
"formulate a standalone question which can be understood "
"without the chat history. Do NOT answer the question, "
"just reformulate it if needed and otherwise return it as is."
)
condense_question_prompt = ChatPromptTemplate.from_messages(
[
("system", condense_question_system_template),
("placeholder", "{chat_history}"),
("human", "{input}"),
]
)
# Create a history-aware retriever
history_aware_retriever = create_history_aware_retriever(
llm, vector_store_retriever, condense_question_prompt
)
# System prompt for question answering
system_prompt = (
"You are an assistant for question-answering tasks. "
"Use the following pieces of retrieved context to answer "
"the question. If you don't know the answer, say that you "
"don't know. Use three sentences maximum and keep the "
"answer concise."
"\n\n"
"{context}"
)
qa_prompt = ChatPromptTemplate.from_messages(
[
("system", system_prompt),
("placeholder", "{chat_history}"),
("human", "{input}"),
]
)
# Create a stuff documents chain for question answering
qa_chain = create_stuff_documents_chain(llm, qa_prompt)
# Create a retrieval chain with the history-aware retriever and QA chain
convo_qa_chain = create_retrieval_chain(history_aware_retriever, qa_chain)
return convo_qa_chain
def format_answer(response, max_documents=3):
"""
Format the answer and context to ensure plain text output without any special characters,
and limit the number of context documents shown.
Args:
response (dict): The response dictionary containing 'answer' and 'context'.
max_documents (int): Maximum number of context documents to display.
Returns:
str: Formatted output with limited context.
"""
# Extract the main answer
answer = response.get('answer', '')
# Initialize context summary
context_summary = ""
# Extract and summarize context if available
context = response.get('context', [])
if context and isinstance(context, list):
# Limit the number of documents to max_documents
limited_context = context[:max_documents]
# Concatenate page_content from each Document object in the limited context
context_summary = "\n\n".join(doc.page_content for doc in limited_context)
# Clean up the answer text
if isinstance(answer, str):
answer = answer.replace("\\n", "\n").replace("\\'", "'").replace('\\"', '"').strip()
# Clean up the context summary text
if isinstance(context_summary, str):
context_summary = context_summary.replace("\\n", "\n").replace("\\'", "'").replace('\\"', '"').strip()
# Combine the answer and context summary
formatted_output = f"Answer:\n\n{answer}\n\nContext (showing up to {max_documents} documents):\n\n{context_summary}"
return formatted_output
def main():
# Parse command line arguments
parser = argparse.ArgumentParser(description='PDF Question Answering using LangChain and Ollama')
parser.add_argument('pdf_path', type=str, help='Path to the PDF file')
parser.add_argument('--persist', type=str, default='db', help='Base directory to save or load persisted vector stores')
args = parser.parse_args()
# Check if the PDF file exists
if not os.path.exists(args.pdf_path):
print(f"Error: The file {args.pdf_path} does not exist.")
exit(1)
# Initialize LLM (LLaMA 3.1 model hosted on Ollama)
llm = Ollama(model="llama3.1")
# Initialize Ollama embeddings model using nomic-embed-text:latest
embeddings = OllamaEmbeddings(model="nomic-embed-text:latest")
# Process the PDF and prepare it for QA
print("Processing the PDF. Please wait...")
vector_store = process_pdf_for_qa(args.pdf_path, embeddings, args.persist)
if vector_store is None:
print("Processing failed. Exiting.")
exit(1)
# Create the QA chain with memory
qa_chain = create_qa_chain_with_memory(vector_store, llm)
# Prepare the filename for the conversation log
base_filename = os.path.basename(args.pdf_path).replace(' ', '_')
date_str = datetime.now().strftime('%Y-%m-%d')
log_filename = f"{date_str}_{base_filename}.md"
# Open the file in write mode
with open(log_filename, 'w') as log_file:
# Start the conversation log
log_file.write(f"# Conversation Log for {base_filename}\n")
log_file.write(f"## Date: {date_str}\n\n")
# Interactive mode for asking questions
print("PDF processing complete. You can now ask questions about the content.")
print("Type 'exit' or 'quit' to end the session.")
while True:
question = input("Enter your question: ").strip()
if question.lower() in ["exit", "quit"]:
print("Exiting the session. Goodbye!")
break
# Get the answer
response = qa_chain.invoke(
{
"input": question,
"chat_history": [], # Initially, pass an empty chat history
}
)
# Format the answer
answer = format_answer(response, max_documents=1)
# Log the question and answer to the file
log_file.write(f"### Question:\n{question}\n\n")
log_file.write(f"### Answer:\n{answer}\n\n")
# Display the answer to the user
if answer.strip():
print(f"Answer:\n\n{answer}\n")
else:
print("No relevant information found for your question. Please try asking a different question.")
if __name__ == "__main__":
main()
|