aboutsummaryrefslogtreecommitdiffstats
path: root/ctrack/organisations/management/commands
diff options
context:
space:
mode:
authorMatthew Lemon <lemon@matthewlemon.com>2020-04-03 15:19:08 +0100
committerMatthew Lemon <lemon@matthewlemon.com>2020-04-03 15:19:08 +0100
commit3591b1b87793a2734718390691bdde41af1f8bd0 (patch)
tree87b98b1fc755f8aabd83484deca73e09c54b84bd /ctrack/organisations/management/commands
parentc184c99575e03c8b0248b10c65ca234e11695e8d (diff)
big migration reset
Diffstat (limited to 'ctrack/organisations/management/commands')
-rw-r--r--ctrack/organisations/management/commands/populate_db.py12
1 files changed, 6 insertions, 6 deletions
diff --git a/ctrack/organisations/management/commands/populate_db.py b/ctrack/organisations/management/commands/populate_db.py
index e5f76ac..bb963e3 100644
--- a/ctrack/organisations/management/commands/populate_db.py
+++ b/ctrack/organisations/management/commands/populate_db.py
@@ -4,8 +4,8 @@ from random import randint, choice
from django.core.management import BaseCommand
from django.core.management import CommandParser
-from ctrack.assessments.models import CAFSelfAssessment, CAFObjective, CAFPrinciple, CAFContributingOutcome, \
- CAFSelfAssessmentOutcomeScore
+from ctrack.assessments.models import CAFAssessment, CAFObjective, CAFPrinciple, CAFContributingOutcome, \
+ CAFAssessmentOutcomeScore
from ctrack.caf.models import CAF
from ctrack.caf.tests.factories import (
GradingFactory,
@@ -571,17 +571,17 @@ class Command(BaseCommand):
_caf2 = CAF.objects.get(pk=1)
_completer = Person.objects.get(pk=1)
- caf_self_assessment = CAFSelfAssessment.objects.create(
+ caf_assessment = CAFAssessment.objects.create(
caf_id=_caf2.id, completer_id=_completer.id, comments="Random Comments"
)
# TODO Need to create as many of these as there are ContributingOutcomes
# Create a single CAFSelfAssessmentOutcomeScore
for c in cos:
- CAFSelfAssessmentOutcomeScore.objects.create(
- caf_self_assessment_id=caf_self_assessment.id,
+ CAFAssessmentOutcomeScore.objects.create(
+ caf_assessment_id=caf_assessment.id,
caf_contributing_outcome_id=c.id,
- self_assessment_score=random.choice(["Achieved", "Partially Achieved", "Not Achieved"]),
+ assessment_score=random.choice(["Achieved", "Partially Achieved", "Not Achieved"]),
baseline_assessment_score=random.choice(["Achieved", "Partially Achieved", "Not Achieved"])
)